Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 28 The Plane Exercise 28.11 Question 12 Maths Textbook Solution.

Answers (1)

Answer:  12 x+15 y-14 z-68=0

Hint: Use formula  a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0

Given: Points (2,2,-1) \&(3,4,2)  ratios 7, 0, 6

Solution: We know that the equation of plane passing through \left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)  is

            a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0                             ……………….. (1)

So, equation of plane passing through  (2,2,-1)  is

            a(x-2)+b(y-2)+c(z+1)=0                                 ………………… (2)

It also passes through (3,4,2)

So, equation (2) passes through (3,4,2)

            \begin{aligned} &a(3-2)+b(4-2)+c(2+1)=0 \\ & \end{aligned}

            \Rightarrow a+2 b+3 c=0                                                        …………………. (3)

We know that line

          \frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}   is parallel to plane a_{2} x+b_{2} y+c_{2} z+d_{2}=0

if   a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0            …………… (4)

Here, the plane (2) is parallel to line having direction ratios 7, 0 ,6

            So, \begin{aligned} &a \times 7+b \times 0+c \times 6=0 \\ & \end{aligned}

                    \Rightarrow 7 a+6 c=0 \\                             

                    \Rightarrow a=\frac{-6 c}{7}                                                       ………………… (5)

Putting the value of a in equation (3) we get

            \begin{aligned} &a+2 b+3 c=0 \\ & \end{aligned}

            \Rightarrow \frac{-6 c}{7}+2 b+3 c=0 \\

            \Rightarrow 14 b+15 c=0 \\

           \Rightarrow b=\frac{-15 c}{14}

Putting the value of a and b in equation (2) we get

            \begin{aligned} &a(x-2)+b(y-2)+c(z+1)=0 \\ & \end{aligned}

    \Rightarrow \frac{-6 c}{7}(x-2)+\frac{-15 c}{14}(y-2)+c(z+1)=0 \\

    \Rightarrow \frac{-6 x c}{7}+\frac{12 c}{7}-\frac{15 c y}{14}+\frac{30 c}{14}+c z+c=0

Multiplying by \frac{14}{c} we have

            \begin{aligned} &\Rightarrow-12 x+24-15 y+30+14 z+14=0 \\ \end{aligned}

            \Rightarrow-12 x-15 y+14 z+68=0 \\

            \Rightarrow 12 x+15 y-14 z-68=0

Equation of required plane is  12 x+15 y-14 z-68=0

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads