Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 28 The Plane Exercise 28.11 Question 23 Maths Textbook Solution.

Answers (1)

Answer:  \overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(-3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})

Hint: Use the properties of plane

Given:  \overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}})=5 \text { and } \overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=6

Solution: We know that, the equation of line passing through \left ( 1,2,3 \right )  is given by

            \frac{x-1}{a_{1}}=\frac{y-2}{b_{1}}=\frac{z-3}{c_{1}}                            ………….. (1)

We know that line

           \frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}   is parallel to plane  a_{2} x+b_{2} y+c_{2} z+d_{2}=0  if

            a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0                           …………… (2)

Here line (1) is parallel to plane

            \begin{gathered} x-2 y+z=5 \\ \end{gathered}

So, a \times 1+b \times(-1)+c \times 2=0 \\

            \Rightarrow a-b+2 c=0                                        …………... (3)

Also, line (1) parallel to plane

            \begin{gathered} 3 x+y+z=6 \\ \end{gathered}

So, a \times 3+b \times(1)+c \times 1=0 \\

            \Rightarrow 3 a+b+c=0                                       …………… (4)

Solving equation (3) and (4) by cross multiplication we have,

            \begin{aligned} &\frac{a}{-1 \times 1-(1) \times 2}=\frac{b}{3 \times 2-1 \times 1}=\frac{c}{1 \times 1-3 \times(-1)} \\ & \end{aligned}

            \Rightarrow \frac{a}{-1-2}=\frac{b}{6-1}=\frac{c}{1+3} \\

            \Rightarrow \frac{a}{-3}=\frac{b}{5}=\frac{c}{4}=k(\text { say })

             a=-3 k, b=5 k \& c=4 k

Putting the value in equation (1) we get

            \frac{x-1}{-3 k}=\frac{y-2}{5 k}=\frac{z-3}{4 k}

Multiplying by k we have

            \frac{x-1}{-3}=\frac{y-2}{5}=\frac{z-3}{4}

The required equation is

            \vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(-3 \hat{i}+5 \hat{j}+4 \hat{k})

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads