Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Differentiation exercise 10.4 question 1 maths textbook solution

Answers (1)

Answer:

\left(\frac{-y}{x}\right)

Hint:

Use product rule to find  \frac{dy}{dx}

Given:

x y=C^{2}

Solution:

Differentiate the given equation  x y=C^{2}  w.r.t x      

\begin{aligned} &x \cdot \frac{d y}{d x}+y=0 \\ &x \frac{d y}{d x}=-y \\ &\frac{d y}{d x}=\frac{-y}{x} \end{aligned}                                    \left[\begin{array}{c} \because \frac{d(\operatorname{cons} \tan t)}{d x}=0 \\ \frac{d(u \cdot v)}{d x}=u \cdot \frac{d v}{d x}+v \frac{d u}{d x} \end{array}\right]

 

Hence  \frac{d y}{d x}=\frac{-y}{x} is the required answer.

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads