Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Differentiation exercise 10.5 question 18 sub question (iv) maths textbook solution

Answers (1)

Answer: (x \cos x)^{x}\left\{(1-x \tan x)+\log (x \cos x)+(x \sin x)^{\frac{1}{x}}\left\{\frac{x \cos x}{x^{2} \sin x}-\log \left(\frac{x \sin x}{x^{2}}\right)\right\}\right.

Hint: Diff by applying  x^{x}

Given: (x \cos x)^{x}+(x \sin x)^{\frac{1}{x}}

Solution:  \text { Let } y=(x \cos x)^{x}+(x \sin x)^{\frac{1}{x}}

        u=(x \cos x)^{x}

Take log both sides

        \log u=\log (x \cos x)^{x}

        \frac{1}{u} \times \frac{d u}{d x}=(x \cos x)^{x}\left[(\log x+1)+\left\{\log \cos x+\frac{x}{\cos x}(-\sin x)\right\}\right]

        \frac{1}{u} \frac{d u}{d x}=(x \cos x)^{x}\{(1-x \tan x)+\log (x \cos x)\}.....................(1)

        v=(x \sin x)^{\frac{1}{x}}

Take log both side

        \log v=\frac{1}{x} \log (x \sin x)

        \frac{1}{v} \frac{d v}{d x}=\frac{1}{x}\left\{\frac{1}{x \sin x}(x \cos x+\sin x \times 1\}+\log (x \sin x) \times \frac{-1}{x^{2}}\right.

        \frac{1}{x}\left(\frac{x \cos x+\sin x \times 1}{x \sin x}\right)+\log (x \sin x) \times \frac{-1}{x^{2}}

        \frac{d u}{d x}=(x \sin x)^{\frac{1}{x}}\left\{\frac{x \cos x+\sin x}{x^{2} \sin x}-\log \frac{(x \sin x)}{x^{2}}\right\}        ............(2)

From (1) and (2)

        \frac{d y}{d x}=(x \cos x)^{x}\left\{(1-x \tan x)+\log (x \cos x)+(x \sin x)^{\frac{1}{x}}\left\{\frac{x \cos x}{x^{2} \sin x}-\log \left(\frac{x \sin x}{x^{2}}\right)\right\}\right.

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads