Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Differentiation exercise 10.5 question 45 maths textbook solution

Answers (1)

Answer: \frac{d y}{d x}=\frac{1-x}{x}

Hint: To solve this equation we will convert term into log

Given: e^{x+y}-x=0

Solution:  

        e^{x+y}-x=0

        \begin{aligned} &\log e^{x+y}=\log x \\\\ &(x+y) \log e=\log x \\\\ &\frac{d}{d x}(x+y)=\frac{d}{d x}(\log x) \end{aligned}

        \begin{aligned} &1+\frac{d y}{d x}=\frac{1}{x} \\\\ &\frac{d y}{d x}=\frac{1}{x}-1=\frac{1-x}{x} \\\\ &\frac{d y}{d x}=\frac{1-x}{x} \end{aligned}

Hence proved

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads