Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 Chapter Maxima and Minima exercise Multiple choice question, question 34 maths textbook solution.

Answers (1)

Answer: (b) \frac{1}{e}

Hint: For local maxima or minima, we must have f'(x)=0.

Given: y=x^x

Solution:

Let us consider

y=x^x

Applying log on both sides,

\log y=x \log x, (x>0)

On differentiating, we get

\begin{aligned} &\frac{1}{y} \frac{d y}{d x}=1 . \log x+x \cdot \frac{1}{x} \\ &\frac{d y}{d x}=(x)^{x}(1+\log x) \\ &\frac{d y}{d x}=0 \\ &(x)^{x}(1+\log x)=0 \end{aligned}

1+\log x=0

\log x=-1

x=e^{-1}

x=\frac{1}{e}

Therefore, the stationary point is x=\frac{1}{e}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads