Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D.Sharma Maths Class 12 Chapter 10 Differentiation Exercise 10.3 Question 11  Maths Textbook Solution.

Answers (1)

Answer: \frac{\mathrm{d} y}{\mathrm{~d} \mathrm{x}}=-1

Hint:

\frac{\mathrm{d}}{\mathrm{dx}} \text { (constants) }=0

\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}

Given:

\cos ^{-1}\left\{\frac{\cos x+\sin x}{\sqrt{2}}\right\}

-\frac{\mathrm{\pi}}{4}<\mathrm{x}<\frac{\mathrm{\pi}}{4}

Solution:

Let,

y=\cos ^{-1}\left\{\frac{\cos x+\sin x}{\sqrt{2}}\right\}

Now

\mathrm{y}=\cos ^{-1}\left\{\cos \mathrm{x} \frac{1}{\sqrt{2}}+\sin \mathrm{x} \frac{1}{\sqrt{2}}\right\}

y=\cos ^{-1}\left\{\cos x \cos \left(\frac{\pi}{4}\right)+\sin x \sin \left(\frac{\pi}{4}\right)\right\}

\sin \left(\frac{\mathrm{\pi}}{4}\right)=\frac{1}{\sqrt{2}} \&

\cos \left(\frac{\mathrm{\pi}}{4}\right)=\frac{1}{\sqrt{2}}

Using,

\cos (A-B)=\cos A \cos B+\sin A \sin B

y=\cos ^{-1}\left\{\cos \left(x-\frac{\pi}{4}\right)\right\}

Considering the limits,

\frac{-\pi}{4}<\mathrm{x}<\frac{\mathrm{\pi}}{4}

   -\frac{\pi}{4}-\frac{\pi}{4}<x-\frac{\pi}{4}<\frac{\pi}{4}-\frac{\pi}{4}

-\frac{2 \pi}{4}<x-\frac{\pi}{4}<0

\frac{-\pi}{2}<x-\frac{\pi}{4}<0

Now,

y=\cos ^{-1}\left\{\cos \left(x-\frac{\pi}{4}\right)\right\}

\mathrm{y}=-\left(\mathrm{x}-\frac{\mathrm{\pi}}{4}\right)                                                                                                                        \left\{\begin{array}{l} \cos ^{-1}(\cos \theta)=-\theta \\ \text { if } \theta \in[-\pi, 0] \end{array}\right\}

Differentiating with respect to x , We get

\frac{d y}{d x}=-1

\frac{\mathrm{d}}{\mathrm{d} \mathrm{x}}(\text { constants })=0

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads