Get Answers to all your Questions

header-bg qa

Provide Solution For R.D.Sharma Maths Class 12 Chapter 10 Differentiation Exercise 10.3  Question 21 Maths Textbook Solution.

Answers (1)

Answer:\frac{dy}{dx}=\frac{1}{2}

Hint:

\frac{dy}{dx}\left ( x^{n} \right )=nx^{n-1}

\frac{dy}{dx}\left (constant\right )=0

Given:

\tan ^{-1}\left\{\frac{\sin x}{1+\cos x}\right\},-\pi<x<\pi

Solution:

Let,

y=\tan ^{-1}\left\{\frac{\sin x}{1+\cos x}\right\}

Function y is defined for all the real numbers where \cos x\neq -1

\begin{aligned} &\text { Using } 2 \cos ^{2} \theta=1+\cos 2 \theta \\ &2 \sin \theta \cos \theta=\sin 2 \theta \\ &y=\tan ^{-1}\left\{\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\right\} \\ &y=\tan ^{-1}\left\{-\frac{\sin x / 2}{\cos x / 2}\right\} \\ &y=\tan ^{-1}\left\{\tan \frac{x}{2}\right\} \\ &y=\frac{x}{2} \end{aligned}                                                

Differentiating with respect to x , We get

\frac{dy}{dx}=\frac{d}{dx}\left ( \frac{x}{2} \right )

\frac{dy}{dx}=\frac{1}{2}

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads