Get Answers to all your Questions

header-bg qa

Provide Solution for RD Sharma Class 12 Chapter 22 Algebra of Vectors Exercise 22.7 Question 13

Answers (1)

Answer:

-2

Hint:

Use the formula  \overrightarrow{A B}=K \overrightarrow{B C}  to prove it is collinear

Given:

\begin{aligned} &A=\lambda \hat{i}-10 \hat{j}+3 \hat{k} \\ &B=\hat{i}-\hat{j}+3 \hat{k} \\ &C=3 \hat{i}+5 \hat{j}+3 \hat{k} \end{aligned}

Solution:

\begin{aligned} &A=\lambda \hat{i}-10 \hat{j}+3 \hat{k} \\ &B=\hat{i}-\hat{j}+3 \hat{k} \\ &C=3 \hat{i}+5 \hat{j}+3 \hat{k} \end{aligned}
\begin{aligned} &\overrightarrow{A B}=(\hat{i}-\hat{j}+3 \hat{k})-(\lambda \hat{i}-10 \hat{j}+3 \hat{k}) \\ &=(1-\lambda) \hat{i}+(-1+10) \hat{j}+(3-3) \hat{k} \\ &=(1-\lambda) \hat{i}+9 \hat{j} \end{aligned}
\begin{aligned} &\overrightarrow{B C}=(3 \hat{i}+5 \hat{j}+3 \hat{k})-(\hat{i}-\hat{j}+3 \hat{k}) \\ &=(3-1) \hat{i}+(5+1) \hat{j}+(3-3) \hat{k} \\ &=2 \hat{i}+6 \hat{j} \\ &\overline{A B}=K \overline{B C} \\ &(1-\lambda) \hat{i}+9 \hat{j}=K(2 \hat{i}+6 \hat{j}) \end{aligned}

Comparing

\begin{aligned} &6 K=9 \\ &\therefore K=\frac{9}{6}=\frac{3}{2} \\ &K=\frac{3}{2} \\ &1-\lambda=2 K \end{aligned}
\begin{aligned} &1-\lambda=2\left(\frac{3}{2}\right) \\ &1-\lambda=3 \\ &1-3=\lambda \\ &\lambda=-2 \end{aligned}

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads