Get Answers to all your Questions

header-bg qa

provide solution for RD Sharma maths class 12 chapter Differentiation exercise  10.2 question 26

Answers (1)

Answer:\operatorname{cosec} x

Hint: You must know the rules of solving derivative of logarithm and trigonometric function.

Given: \log \sqrt{\frac{1-\cos x}{1+\cos x}}

Solution:

Let   y=\log \sqrt{\frac{1-\cos x}{1+\cos x}}

y=\frac{1}{2} \log \left(\frac{1-\cos x}{1+\cos x}\right)                                                    using \log a^{b}=b \log a

 

Differentiate with respect to x

\frac{d y}{d x}=\frac{d}{d x}\left\{\frac{1}{2} \log \left(\frac{1-\cos x}{1+\cos x}\right)\right\}

\frac{d y}{d x}=\frac{1}{2} \times \frac{1}{\left(\frac{1-\cos x}{1+\cos x}\right)} \times \frac{d}{d x}\left(\frac{1-\cos x}{1+\cos x}\right)

\frac{d y}{d x}=\frac{1}{2} \times\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{(1+\cos x) \frac{d}{d x}(1-\cos x)-(1-\cos x) \frac{d}{d x}(1+\cos x)}{(1+\cos x)^{2}}\right] \cdot \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}

 

Using quotient rule

\frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{(1+\cos x)(\sin x)-(1-\cos x)(-\sin x)}{(1+\cos x)^{2}}\right]

\frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{2 \sin x}{(1+\cos x)^{2}}\right]

\frac{d y}{d x}=\frac{\sin x}{(1-\cos x)(1+\cos x)}

\begin{aligned} &\frac{d y}{d x}=\frac{\sin x}{\left(1-\cos ^{2} x\right)} \\ &\frac{d y}{d x}=\frac{\sin x}{\sin ^{2} x} \end{aligned}\begin{aligned} &\frac{d y}{d x}=\frac{1}{\sin x} \\ &\frac{d y}{d x}=\operatorname{cosec} x \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads