Get Answers to all your Questions

header-bg qa

provide solution for RD Sharma maths class 12 chapter Differentiation exercise  10.2 question 30

Answers (1)

Answer: \operatorname{cosec} x

Hint: You must know the rules of solving derivation of logarithm and trigonometric function.

Given: \log (\operatorname{cosec} x-\cot x)

Solution:

Let  y=\log (\operatorname{cosec} x-\cot x)

Differentiate both sides,

\frac{d y}{d x}=\frac{d}{d x} \log (\operatorname{cosec} x-\cot x)

\frac{d y}{d x}=\frac{1}{(\operatorname{cosec} x-\cot x)} \frac{d}{d x}(\operatorname{cosec} x-\cot x)

\frac{d y}{d x}=\frac{1}{(\operatorname{cosec} x-\cot x)} \times\left(-\operatorname{cosec} x \cot x+\operatorname{cosec}^{2} x\right)

\begin{aligned} &\frac{d y}{d x}=\frac{\operatorname{cosec} x(\operatorname{cosec} x-\cot x)}{(\operatorname{cosec} x-\cot x)} \\ &\frac{d y}{d x}=\operatorname{cosec} x \end{aligned}

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads