Get Answers to all your Questions

header-bg qa

provide solution for RD Sharma maths class 12 chapter Differentiation exercise  10.2 question 41

Answers (1)

Answer: \frac{3}{3 x+2}-\frac{2 x^{2}}{(2 x-1)}-2 x \log (2 x-1)

Hint: You must know about the rules of solving derivative of logarithm function.

Given: \log (3 x+2)-x^{2} \log (2 x-1)

Solution:

Let  y=\log (3 x+2)-x^{2} \log (2 x-1)

Differentiate with respect to x,

\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\log (3 x+2)-\mathrm{x}^{2} \log (2 x-1)\right]

\frac{d y}{d x}=\frac{d}{d x} \log (3 x+2)-\frac{d}{d x}\left\{x^{2} \log (2 x-1)\right\}

\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{(3 x+2)} \frac{\mathrm{d}}{\mathrm{dx}}(3 x+2)-\left\{\mathrm{x}^{2} \frac{\mathrm{d}}{\mathrm{dx}} \log (2 x-1)+\log (2 x-1) \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}^{2}\right\}

\frac{d y}{d x}=: \frac{3}{3 x+2}-\frac{2 x^{2}}{(2 x-1)}-2 x \log (2 x-1)

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads