Get Answers to all your Questions

header-bg qa

provide solution for RD Sharma maths class 12 chapter Differentiation exercise  10.4 question 10

Answers (1)

Answer:\frac{y}{x}\left[\frac{x e^{(x-y)}-1}{y e^{(x-y)}-1}\right]

Hint:

Use chain rule and quotient rule

Given:

e^{x-y}=\log \left(\frac{x}{y}\right)

Solution:

Differentiate the given equation w.r.t x

\frac{d\left(e^{x-y}\right)}{d x}=\frac{d\left(\log \left(\frac{x}{y}\right)\right)}{d x}

\frac{d\left(e^{x-y}\right)}{d(x-y)} \times \frac{d(x-y)}{d x}=\frac{d\left(\log \left(\frac{x}{y}\right)\right)}{d\left(\frac{x}{y}\right)} \times \frac{d\left(\frac{x}{y}\right)}{d x}

\left(e^{x-y}\right) \times\left[\frac{d x}{d x}-\frac{d y}{d x}\right]=\frac{1}{\left(\frac{x}{y}\right)} \times\left[\frac{y \cdot \frac{d x}{d x}-x \cdot \frac{d y}{d x}}{y^{2}}\right]                 \left[\because \frac{d\left(e^{x}\right)}{d x}=e^{x}\right]

                                                                    [Using quotient rule \frac{d\left(\frac{u}{v}\right)}{d x}=\frac{v \cdot \frac{d u}{d x}-u \cdot \frac{d v}{d x}}{v^{2}}    ]

e^{x-y} \times\left[1-\frac{d y}{d x}\right]=\frac{y}{x} \times\left[\frac{y-x \frac{d y}{d x}}{y^{2}}\right]

e^{x-y}-e^{x-y} \frac{d y}{d x}=\frac{1}{x y}\left(y-x \frac{d y}{d x}\right)

e^{x-y}-e^{x-y} \frac{d y}{d x}=\frac{y}{x y}-\frac{x}{x y} \cdot \frac{d y}{d x}

\frac{x}{x y} \frac{d y}{d x}-e^{x-y} \frac{d y}{d x}=\frac{y}{x y}-e^{x-y}

\frac{d y}{d x}\left(\frac{x}{x y}-e^{x-y}\right)=\frac{y}{x y}-e^{x-y}

\frac{d y}{d x}=\left[\frac{\frac{y}{x y}-e^{x-y}}{\frac{x}{x y}-e^{x-y}}\right]

\frac{d y}{d x}=\left[\frac{\frac{1}{x}-e^{x-y}}{\frac{1}{y}-e^{x-y}}\right]

      =\frac{\left(\frac{1-x e^{x-y}}{x}\right)}{\left(\frac{1-y e^{x-y}}{y}\right)}

      =\frac{y\left(1-x e^{x-y}\right)}{x\left(1-y e^{x-y}\right)}

      =\frac{-y\left(x e^{x-y}-1\right)}{-x\left(y e^{x-y}-1\right)}

\frac{d y}{d x}=\frac{y}{x} \cdot\left(\frac{x e^{x-y}-1}{y e^{x-y}-1}\right)

Hence \frac{d y}{d x}=\frac{y}{x} \left[\frac{x e^{x-y}-1}{y e^{x-y}-1}\right] is the required differentiation

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads