Get Answers to all your Questions

header-bg qa

provide solution for RD Sharma maths class 12 chapter Differentiation exercise  10.4 question 18

Answers (1)

Answer:

\frac{d y}{d x}=\frac{y}{x}

Hint:

Use quotient rule

Given:

\sec \left(\frac{x+y}{x-y}\right)=a

Solution:

\begin{aligned} &\sec \left(\frac{x+y}{x-y}\right)=a \\ &\sec ^{-1} a=\frac{x+y}{x-y} \end{aligned}

Differentiating  \left[\sec ^{-1} a=\frac{x+y}{x-y}\right] w.r.t x

\frac{d\left(\sec ^{-1} a\right)}{d x}=\frac{d}{d x}\left(\frac{x+y}{x-y}\right)

0=\frac{(x-y) \frac{d(x+y)}{d x}-(x+y) \frac{d(x-y)}{d x}}{(x-y)^{2}}                        [Use quotient rule]

\frac{(x-y)\left(\frac{d x}{d x}+\frac{d y}{d x}\right)-(x+y)\left(\frac{d x}{d x}-\frac{d y}{d x}\right)}{(x-y)^{2}}=0

(x-y)\left(1+\frac{d y}{d x}\right)-(x+y)\left(1-\frac{d y}{d x}\right)=0

(x-y)+(x-y) \frac{d y}{d x}-(x+y)+(x+y) \frac{d y}{d x}=0

\frac{d y}{d x}[(x-y)+(x+y)]=x+y-(x-y)

\frac{d y}{d x}[x-y+x+y]=x+y-x+y

\frac{d y}{d x}(2 x)=2 y

\begin{aligned} &\frac{d y}{d x}=\frac{2 y}{2 x}=\frac{y}{x} \\ &\frac{d y}{d x}=\frac{y}{x} \end{aligned}

 Thus, proved

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads