Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter The Plane exercise 28.15 question 10

Answers (1)

Answer:   \frac{13}{12} \sqrt{6},\left(-\frac{1}{12}, \frac{25}{12},-\frac{2}{12}\right)

Hint:

For P as distance put

\begin{aligned} &\vec{r}=i+\hat{\jmath}+2 \hat{k} \text { in } \\\\ &\vec{r} \cdot(\hat{\imath}-2 \hat{\jmath}+4 \hat{k})+5=0 P(1,1,2) \end{aligned}

                                        

Given:

Find the length and foot of the perpendicular from the point (1,1,2) to the plane \vec{r} \cdot(\hat{\imath}-2 \hat{\jmath}+4 \hat{k})+5=0

Solution:

Distance  =\frac{(\hat{\imath}+\hat{\jmath}+2 \hat{k}) \cdot(\hat{\imath}-2 \hat{\jmath}+4 \hat{i})+5}{\sqrt{1^{2}+(-2)^{2}+4^{2}}}

                \begin{aligned} &=\frac{1-2+8+5}{\sqrt{1+4+16}} \\\\ &=\frac{12}{\sqrt{21}} \end{aligned}

Direction of  \vec{n}=(1,-2,4)
 

equation of line \frac{x-1}{1}=\frac{y-1}{-2}=\frac{3-2}{4}=\lambda(\text { say })

\begin{aligned} &x=\lambda+1 \\\\ &y=2 \lambda+1, \\\\ &z=4 \lambda+2 \end{aligned}

P u t\; \vec{r}=(\lambda+1) i+(-2 \lambda+1) \hat{\jmath}+(4 \lambda+2) \hat{k} \text { in } \vec{r} \cdot(\hat{\imath}-\hat{y}+4 \hat{k})+5=0

\begin{aligned} &{[(\lambda+1) i+(-2 \lambda+1) \hat{\jmath}+(4 \lambda+2) \hat{k}] \cdot[\hat{l}-\hat{y}+4 \hat{k}]+5=0} \\\\ &\lambda+1+4 \lambda-2+16 \lambda+8+5=0 \\\\ &21 \lambda+12=0 \end{aligned}

\begin{aligned} &\lambda=-\frac{12}{21} \\\\ &x=\frac{-4}{7}+1 \\\\ &=\frac{3}{7} \end{aligned}

\begin{aligned} &y=\frac{8}{7}+1 \\\\ &=\frac{15}{7} \\\\ &z=\frac{-16}{7}+2 \end{aligned}

\begin{aligned} &=-\frac{2}{7} \\\\ &\left(\frac{3}{7}, \frac{15}{7}, \frac{-2}{7}\right) \text { Ans. } \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads