Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class12 Chapter Maxima and Minima exercise Multiple choice question, question 7

Answers (1)

Answer: option(a) \frac{1}{2}  

Hint: For local maxima or minima, we must have f'(x) =0.

Given: f(x)=x-x^2

Solution:

We have,

f(x)=x-x^2

f'(x)=1-2x

For maxima and minima f'(x)=0

\Rightarrow 1-2x=0

\Rightarrow x=\frac{1}{2}

Now,

f''(x)=-2<0

So, x=\frac{1}{2} is a point of local maxima.

The local maximum value is given by f\left (\frac{1}{2} \right )=\frac{1}{2}-\frac{1}{4}=\frac{1}{2}

 

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads