One of the four persons John, Rita, Aslam or Gurpreet will be promoted next month. Consequently the sample space consists of four elementary outcomes S = {John promoted, Rita promoted, Aslam promoted, Gurpreet promoted} You are told that the chances of John’s promotion is same as that of Gurpreet, Rita’s chances of promotion are twice as likely as Johns. Aslam’s chances are four times that of John.
(a) Determine P (John promoted)
P (Rita promoted)
P (Aslam promoted)
P (Gurpreet promoted)
(b) If A = {John promoted or Gurpreet promoted}, find P (A).
Given:
Sample Space (S) = John promoted, Rita promoted, Aslam promoted, Gurpreet promoted
Chances of John’s promotion is same as Gurpreet’s, P (E1) = P (E4)
Rita’s chances of promotion as twice as john’s, P (E2) = 2 P(E1)
& chances of Aslam’s promotion are four times that of John’s, P (E3) = 4 P(E1)
Now, let us consider that,
E1 → events that John promoted
E2 → events that Rita promoted
E3 → events that Aslam promoted
E4 → events that Gurpreet promoted
Now, we know that,
Sum of all probabilities = 1
Thus, P(E1) + P(E2) + P(E3) + P(E4) = 1
P(E1) + 2 P(E1) + 4 P(E1) + P(E1) = 1
8 P(E1) = 1
P (E1) = 1/8
Now,
P (Rita promoted) = P (E2) = 2P (E1)
= 2 x 1/8
= 1/4
P (Aslam promoted) = P (E3) = 4P (E1)
= 4 x 1/8
= 1/2
P (Gurpreet promoted) = P (E4) = P (E1)
= 1/8
Thus, A = E1 U E2
P (A) = P (E1 U E2)
= P (E1) + P (E4) – P (E1 ∩ E2) ……. (general addition rule)
= P (E1) + P (E1) – 0
= 1/8 + 1/8
= 2/8
= 1/4