A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the Probability that:
(a) All the three balls are white
(b) All the three balls are red
(c) One ball is red and two balls are white
Given:
No. of reds balls = 8
No. of white balls = 5
Thus, total no. of balls, n = 13
Now, 3 balls are drawn at random, thus,
r = 3
Thus,
n (S) = nCr
= 13C3
P (A) = n (A)/ n(S)
= no. of favorable outcomes/ sample space
Now, total white balls are = 5
Thus,
P (all the three balls are white) = 5C3 / 13C3
= 5 /143
P (A) = n (A)/ n(S)
= no. of favorable outcomes/ sample space
Now, total red balls are = 8
Thus,
P (all the three balls are white) = 8C3 / 13C3
= 28 /143
P (A) = n (A)/ n(S)
= no. of favorable outcomes/ sample space
Now, total white balls are = 5
Thus,
P (One ball is red and two balls are white) = 8C1 x 5C2 / 13C3
= 40 /143