Get Answers to all your Questions

header-bg qa

Q 9.11    A compound microscope consists of an objective lens of focal length 2.0 cm and an eyepiece of focal length 6.25 cm separated by a distance of 15cm. How far from the objective should an object be placed in order to obtain the final image at (a) the least distance of distinct vision (25cm), and  (b) at infinity? What is the magnifying power of the microscope in each case?

Answers (1)

best_answer

In a compound microscope, first, the image of an object is made by the objective lens and then this image acts as an object for eyepiece lens.

Given

the focal length of objective lens = f_{objective} = 2 cm 

focal length of eyepiece lense = f_{eyepiece} = 6.25cm

Distance between the objective lens and eyepiece lens = 15 cm

a)

Now in Eyepiece lense 

Image distance = v_{final} = -25 cm (least distance of vision with sign convention)

focal length = f_{eyepiece} = 6.25 cm

\frac{1}{f_{eyepiece}} = \frac{1}{v_{final}} - \frac{1}{u}

\frac{1}{u} = \frac{1}{v_{final}} -\frac{1}{f_{eyepiece}}

\frac{1}{u} = \frac{1}{-25} -\frac{1}{6.25} = -\frac{1}{5}

u = -5 cm.

Now, this object distance u is from the eyepiece lens since the distance between lenses is given we can calculate this distance from the objective lens. 

 the distance of u from objective lens =  d+u= 15 - 5=10cm. This length will serve as image distance for the objective lens.

v = 10 cm

so in the objective lens

\frac{1}{f_{objective}} = \frac{1}{v} - \frac{1}{u_{initial}}

\frac{1}{u_{initial}} = \frac{1}{v} - \frac{1}{f_{objective}}

\frac{1}{u_{initial}} = \frac{1}{10} - \frac{1}{2} = -\frac{4}{10}=-\frac{2}{5}

u_{intial} = -2.5 cm 

Hence the object distance required is -2.5 cm.

Now, the magnifying power of a microscope is given by 

m=\frac{v}{|u_{initial}|}(1+\frac{d}{f_{eyepiece}})      where d is the least distance of vision 

so putting these values

m=\frac{10}{2.5}(1+\frac{25}{6.25}) = 20

Hence the lens can magnify the object to  20 times.

b) When image is formed at infinity

in eyepiece lens,

\frac{1}{f_{eyepiece}} = \frac{1}{v_{final}} - \frac{1}{u}

\frac{1}{6.25} = \frac{1}{infinity} - \frac{1}{u}

from here u = - 6.25., this distance from objective lens = d+u = 15 - 6.25 = 8.75 = v

in the optical lens:

\frac{1}{f_{objective}} = \frac{1}{v} - \frac{1}{u_{initial}}

\frac{1}{2} = \frac{1}{-6.25} - \frac{1}{u_{initial}}

\frac{1}{u_{initial}} =- \frac{6.75}{17.5}

u_{initial}=-2.59cm

Now, 

m=\frac{v}{|u_{initial}|}(1+\frac{d}{f_{eyepiece}})      where d is the least distance of vision 

putting the values, we get,

 

m=\frac{8.75}{2.59}(1+\frac{25}{6.25})= 13.51

Hence magnifying power, in this case, is 13.51.

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads