Get Answers to all your Questions

header-bg qa

11.11  A fair die is rolled. Consider events E=\left \{ 1,3,5 \right \},F=\left \{ 2,3 \right \} and  G=\left \{ 2,3,4,5 \right \} Find

             (iii)  P((E\cup F)\mid G) and P((E\cap F)\mid G)

Answers (1)

best_answer

A fair die is rolled.

Total outcomes =\left \{ 1,2,3,4,5,6 \right \}=6

E=\left \{ 1,3,5 \right \},F\left \{ 2,3 \right \}  and  G=\left \{ 2,3,4,5 \right \}

E\cap G=\left \{ 3,5 \right \}     ,F\cap G=\left \{ 2,3\right \}

(E\cap G)\cap G =\left \{ 3 \right \}

P[(E\cap G)\cap G] =\frac{1}{6}                  P(E\cap G) =\frac{2}{6}                P(F\cap G) =\frac{2}{6}

P((E\cup F)|G) = P(E|G)+P(F|G) - P[(E\cap F)|G]

                                =\frac{P(E\cap G)}{P(G)}+\frac{P(F\cap G)}{P(G)}-\frac{P((E\cap F)\cap G)}{P(G)}

                              =\frac{\frac{2}{6}}{\frac{4}{6}}+\frac{\frac{2}{6}}{\frac{4}{6}}-\frac{\frac{1}{6}}{\frac{4}{6}}

                             =\frac{2}{4}+\frac{2}{4}-\frac{1}{4}

                              =\frac{3}{4}

P((E\cap F)|G)=\frac{P((E\cap F)\cap G)}{P(G)}

P((E\cap F)|G)=\frac{\frac{1}{6}}{\frac{4}{6}}

P((E\cap F)|G)=\frac{1}{4}

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads