Get Answers to all your Questions

header-bg qa

A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that\frac{p}{q}= \frac{\cos \beta -\cos \alpha }{\sin \alpha-\sin \beta }

Answers (1)

Solution.         According to the question:-
                             

Here a and b be the angles of indication when the ladder at rest and when it pulled away from the wall
In \bigtriangleupAOB
\cos \alpha = \frac{OB}{AB}             cos \theta = \frac{Base}{Hypotenuse}
OB= AB\cos \alpha \cdots \left ( 1 \right )
\sin \alpha = \frac{AO}{AB}               \sin \theta = \frac{Perpendicular}{hypotenuse}

AO= AB\sin \alpha \cdots \left ( 2 \right )
Similarly In \bigtriangleupDOC
\cos \beta = \frac{OC}{DC}
OC= DC\cos \beta \cdots \left ( 3 \right )
\sin \beta = \frac{OD}{DC}
OD= DC\sin \beta \cdots \left ( 4 \right )
Now subtract equation (1) from (3) we get
OC – OB = DC cos\beta – AB cos\alpha
Here    OC – OB = P
and DC = AB because length of ladder remains \Rightarrow P = AB cos
\beta – AB cos\alpha
    P = AB (cos\beta – cos\alpha)         …(5)
Subtract equation (4) from (2) we get
AO – OD = AB sina – DC sin \beta
Here AO – OD = q
and AB = DC because length of ladder remains same
     \Rightarrow   q = AB sin \alpha – AB sin\beta
q = AB (sin \alpha – sin \beta)             …(6)
on dividing equation (5) and (6) we get
\frac{p}{q}= \frac{AB\left ( \cos \beta -\cos \alpha \right )}{AB\left ( \sin \alpha -\sin \beta \right )}
\frac{p}{q}= \frac{\cos \beta -\cos \alpha}{\sin \alpha -\sin \beta}
Hence proved

Posted by

infoexpert27

View full answer