Given: a 2m tall man walks at the rate of m/s towards a m tall street light.
To find: calculate the rate of movement of the tip of the shadow and also the rate of change in the length of the shadow when he is m from the base of the light.
Explanation:
Here the street light is AB =
And man is DC = 2m
Let BC = x m and CE = y m
The rate of the man’s walk towards the streetlight is , and as the man is moving towards the street light, the entity carries a negative charge
Hence, ....(i)
Now consider ΔABE and ΔDCE
∠DEC = ∠AEB (same angle)
∠DCE = ∠ABD = 90°
Hence by AA similarity,
ΔABE≅ΔDCE
Hence by CPCT,
Apply the first derivative with respect to t,
After substituting the value in the above equation from equation (i), we get
So, the rate of movement of tip of the shadow is -1m/s, i.e., the length of the shadow is decreasing at the rate of 1m/s.
Let BE = z
So from fig,
z = x+y
Let’s apply the first derivative with respect to t on the above equation.
So, the rate of tip of the shadow moving towards the light source is of m/s.