Get Answers to all your Questions

header-bg qa

26. A solenoid 60 cm long and of radius 4.0 cm has 3 layers of windings of 300 turns each. A 2.0 cm long wire of mass 2.5 g lies inside the solenoid (near its centre) normal to its axis; both the wire and the axis of the solenoid are in the horizontal plane. The wire is connected through two leads parallel to the axis of the solenoid to an external battery which supplies a current of 6.0 A in the wire. What value of current (with an appropriate sense of circulation) in the windings of the solenoid can support the weight of the wire? g = 9.8 m s ^{-2}         

Answers (1)

best_answer

The magnetic field inside the solenoid is given by 

B=\mu _{0}nI

n is number of turns per unit length

n=\frac{3\times 300}{0.6}

n=1500 m-1

Current in the wire I= 6 A

Mass of the wire m = 2.5 g

Length of the wire l = 2 cm

The windings of the solenoid would support the weight of the wire when the force due to the magnetic field inside the solenoid balances  weight of the wire

BI_wl=mg

\\B=\frac{mg}{I_{w}l}\\ \\\mu _{0}nI=\frac{mg}{I_{w}l}\\ I=\frac{mg}{I_{w}l\mu _{0}n}\\ I=\frac{2.5\times 10^{-3}\times 9.8}{6\times 0.02\times 4\pi \times 10^{-7}\times 1500}\\ I=108.37\ A

Therefore a current of 108.37 A in the solenoid would support the wire.

Posted by

Sayak

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads