Consider the above figure. Assume centre O touches the sides AB and AC of the triangle at point E and F respectively.
Let the length of AE is x.
Now in ,
(tangents on the circle from point C)
(tangents on the circle from point B)
(tangents on the circle from point A)
Now AB = AE + EB
Now
Area of triangle
Now area of
Area of
Area of
Now Area of the = Area of + Area of + Area of
On squaring both the side, we get
Hence
AB = x + 8
=> AB = 7+8
=> AB = 15
AC = 6 + x
=> AC = 6 + 7
=> AC = 13
Answer- AB = 15 and AC = 13
12. A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see Fig. 10.14). Find the sides AB and AC.