Get Answers to all your Questions

header-bg qa

Q 10.26 (a) What is the largest average velocity of blood flow in an artery of radius 2×10-3m if the flow must remain laminar?

Answers (1)

best_answer

The diameter of the artery is d

\\d=2r\\ d=2\times 2\times 10^{-3}\\ d=4\times 10^{-3}

The viscosity of blood is \eta =2.08\times 10^{-3}\ Pa\ s

The density of blood is \rho =1.06\times 10^{3}\ kg\ m^{-3}

The average velocity is given by v_{avg}=\frac{N_{Re}\eta }{\rho d}

Taking the Maximum value of Reynold's Number ( NRe = 2000) at which Laminar Flow takes place we have

\\v_{avg,max}=\frac{2000\times 2.08\times 10^{-3}}{1.06\times 10^{3}\times 4\times 10^{-3}}\\ v_{avg,max}=0.98ms^{-1}

Posted by

Sayak

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads