AB is a diameter of a circle and C is any point on the circle. Show that the area of Δ ABC is maximum when it is isosceles.
Given: a circle with AB as diameter and C is any point on the circle
To show: area of Δ ABC is maximum, when it is isosceles
Explanation: If we take r as the radius of the circle, the diameter will become 2r= AB
This indicates that any angle in a semicircle is 90°.
Hence ∠ACB = 90°
Now let AC = x and BC = y
Using the Pythagoras theorem in this right-angled triangle ABC,
Then putting the values from the equation (i), we get
By finding the first derivative of the area,
Simultaneously using the product rule of differentiation and also taking out the constant terms,
Using the power rule of differentiation,
Critical point can be calculated by putting the first derivative equal to 0
Hence
Differentiating the equation (ii) will give us the second derivative of the equation
Removing all the constant terms and then using the product rule of differentiation,
After using the power rule of differentiation,
For in above equation, we get
Thus, for , the area of is maximum
The maximum value can be calculated by substituting in equation (i),
i.e., the two sides of the are equal
Hence, the area of is maximum, when it is isosceles
Hence, proved.