Q: 7 ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that
Given: ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D.
To prove :
Proof : In ABC,
M is the midpoint of AB. (Given)
DM || BC (Given)
By converse of midpoint theorem,
D is the midpoint of AC i.e. AD = DC.
In AMD and CMD,
AD = DC (proved above)
ADM = CDM (Each right angle)
DM = DM (Common)
AMD CMD (By SAS)
AM = CM (CPCT)
But ,
Hence,