Q 7. AC and BD are chords of a circle that bisect each other. Prove that
(i) AC and BD are diameters
Given: AC and BD are chords of a circle which bisect each other.
To prove: AC and BD are diameters.
Construction: Join AB,BC,CD,DA.
Proof :
In $\triangle \mathrm{ABD} \text { and } \triangle \mathrm{CDO}$,
$\mathrm{AO}=\mathrm{OC}$-----(Given)$
$\angle \mathrm{AOB}=\angle \mathrm{COD}$---- (Vertically opposite angles)
$\mathrm{BO}=\mathrm{DO}$----(Given)
So, $\triangle \mathrm{ABD} \cong \triangle \mathrm{CDO}$ (By SAS)
$\angle \mathrm{BAO}=\angle \mathrm{DCO}
---(\mathrm{CPCT})$
$\angle \mathrm{BAO}$ and $\angle \mathrm{DCO}$ are alternate angles and are equal.
So, $A B \| D C$ ----------1
Also $A D \| B C$ ---------- 2
From 1 and 2,
$\angle A+\angle C=180^{\circ}$
$\angle \mathrm{A}=\angle \mathrm{C}$
From 3 and 4,
$\angle A+\angle A=180^{\circ}$
$\Rightarrow 2 \angle A=180^{\circ}$
$\Rightarrow \angle A=90^{\circ}$
BD is the diameter of the circle.
Similarly, AC is a diameter.