An experiment consists of rolling a die until a 2 appears.
(i) How many elements of the sample space correspond to the event that the 2 appears on the kth roll of the die?
(ii) How many elements of the sample space correspond to the event that the 2 appears not later than the kth roll of the die?
We know that, the no. of outcomes when a die is thrown is 6
Thus, the first (k – 1)th roll has 5 outcomes each
Thus, no. of outcomes = 5k-1
Thus,
In the first roll, no. of ways in which 2 appears will be = 1 outcome
In the second roll, no. of ways in which 2 appears will be = 5 x 1 outcome
……. (since the first roll doesn’t result in 2)
In the third roll, no. of ways in which 2 appears will be = 5 x 5 x 1 outcome
……. (since the first two rolls doesn’t result in 2)
In the (k – 1)th roll, no. of ways in which 2 appear will be = [5 x 5 x 1 ….. (k – 1)] outcome
= 5k-1
Now, the possibility of 2 appearing before kth roll = 1 + 5 + 52 + 53 + …… + 5k-1
Now,
Thus, here, a = 1 & r = 5/1 = 5 >1
Thus,
= 1 x (5k – 1) / 5 – 1
= 5k – 1 / 4