Get Answers to all your Questions

header-bg qa

Q: An open box with square base is to be made of a given quantity of card board of area c2. Show that the maximum volume of the box is \frac{c^3}{6\sqrt3}cubic units.

Answers (1)

Given: a cardboard box that is open and square in shape has c^2 area

To show: \frac{c^3}{6\sqrt3} cubic units is the maximum volume of the box.

Explanation:

Take the side of the square be x cm and

Take the height the box be y cm.

So, the total area of the cardboard used is

A = area of square base + 4x area of rectangle

\Rightarrow A = x\textsuperscript{2}+4xy

But it is given this is equal to c\textsuperscript{2}, hence

\\{c\textsuperscript{2} = x\textsuperscript{2}+4xy}\\ { \Rightarrow 4xy = c\textsuperscript{2}-x\textsuperscript{2}}\\

\Rightarrow \mathrm{y}=\frac{\mathrm{c}^{2}-\mathrm{x}^{2}}{4 \mathrm{x}} \ldots \ldots(i)

According to the given condition the area of the square base will be

V = base × height

Since the base is square, the volume is

V = x\textsuperscript{2}y \ldots \ldots (ii)

Then putting the values of equation (i) in equation (ii), we get

\\ \mathrm{V}=\mathrm{x}^{2}\left(\frac{\mathrm{c}^{2}-\mathrm{x}^{2}}{4 \mathrm{x}}\right) \\ \mathrm{V}=\frac{\mathrm{x}}{4}\left(\mathrm{c}^{2}-\mathrm{x}^{2}\right) \\ \mathrm{V}=\frac{1}{4}\left(\mathrm{xc}^{2}-\mathrm{x}^{3}\right)
Calculation of the first derivative of the equation,

\mathrm{V}^{\prime}=\frac{\mathrm{d}\left(\frac{1}{4}\left(\mathrm{xc}^{2}-\mathrm{x}^{3}\right)\right)}{\mathrm{dx}}
Removing all the constant terms
$$ \mathrm{V}^{\prime}=\frac{1}{4} \frac{\mathrm{d}\left(\mathrm{xc}^{2}-\mathrm{x}^{3}\right)}{\mathrm{dx}}
Using the sum rule of differentiation, we get
\mathrm{V}^{\prime}=\frac{1}{4}\left[\frac{\mathrm{d}\left(\mathrm{xc}^{2}\right)}{\mathrm{dx}}-\frac{\mathrm{d}\left(\mathrm{x}^{3}\right)}{\mathrm{dx}}\right]

Removing all the constant terms, we get
\mathrm{V}^{\prime}=\frac{1}{4}\left[\mathrm{c}^{2} \frac{\mathrm{d}(\mathrm{x})}{\mathrm{dx}}-\frac{\mathrm{d}\left(\mathrm{x}^{3}\right)}{\mathrm{d} \mathrm{x}}\right]
After differentiating the equation, we get
\mathrm{V}^{\prime}=\frac{1}{4}\left[\mathrm{c}^{2}-3 \mathrm{x}^{2}\right] \ldots \ldots (iii)
We need to calculate the second derivative to find out the maximum value of x , so for that let \mathrm{V}^{\prime}=0, so equating above equation with 0, we get
\frac{1}{4}\left[c^{2}-3 x^{2}\right]=0

\\ \Rightarrow c^{2}-3 x^{2}=0$ \\\\$\Rightarrow 3 x^{2}=c^{2}$ \\\\$\Rightarrow \mathrm{x}^{2}=\frac{\mathrm{c}^{2}}{3}$ \\\\$\Rightarrow \mathrm{x}=\frac{\mathrm{c}}{\sqrt{3}}
Differentiating equation (iii) again with respect to x, we get
\Rightarrow \mathrm{V}^{\prime \prime}=\frac{\mathrm{d}\left(\frac{1}{4}\left[\mathrm{c}^{2}-3 \mathrm{x}^{2}\right]\right)}{\mathrm{dx}}
Removing all the constant terms results into
\Rightarrow \mathrm{V}^{\prime \prime}=\frac{1}{4} \frac{\mathrm{d}\left(\mathrm{c}^{2}-3 \mathrm{x}^{2}\right)}{\mathrm{dx}}

Using the differentiation rule of sum, we get
\\\Rightarrow \mathrm{V}^{\prime \prime}=\frac{1}{4}\left[\frac{\mathrm{d}\left(\mathrm{c}^{2}\right)}{\mathrm{d} \mathrm{x}}-\frac{\mathrm{d}\left(3 \mathrm{x}^{2}\right)}{\mathrm{dx}}\right]$ \\$\Rightarrow \mathrm{V}^{\prime \prime}=\frac{1}{4}[0-3(2 \mathrm{x})]$ \\$\Rightarrow \mathrm{V}^{\prime \prime}=\frac{-6 \mathrm{x}}{4}$ \\$\Rightarrow \mathrm{V}^{\prime \prime}=\frac{-3 \mathrm{x}}{2}
x=\frac{c}{\sqrt{3}}, the above equation becomes,
\\\Rightarrow\left(\mathrm{V}^{\prime \prime}\right)_{\mathrm{x}=\frac{\mathrm{c}}{\sqrt{3}}}=\frac{-3\left(\frac{\mathrm{c}}{\sqrt{3}}\right)}{2}$ \\\\$\Rightarrow\left(\mathrm{V}^{\prime \prime}\right)_{\mathrm{x}=\frac{\mathrm{c}}{\sqrt{3}}}=\frac{-3 \mathrm{c}}{2 \sqrt{3}}<0

Thus, the volume (V) is maximum at x=\frac{c}{\sqrt{3}}

∴ The box has a maximum value of

\\ \mathrm{V}_{\mathrm{x}=\frac{\mathrm{c}}{\sqrt{3}}}=\frac{1}{4}\left(\left(\frac{\mathrm{c}}{\sqrt{3}}\right) \mathrm{c}^{2}-\left(\frac{\mathrm{c}}{\sqrt{3}}\right)^{3}\right) \\\\ \mathrm{V}_{\mathrm{x}=\frac{\mathrm{c}}{\sqrt{3}}}=\frac{1}{4}\left(\left(\frac{\mathrm{c}^{3}}{\sqrt{3}}\right)-\frac{\mathrm{c}^{3}}{3 \sqrt{3}}\right) \\\\ \mathrm{V}_{\mathrm{x}=\frac{\mathrm{c}}{\sqrt{3}}}=\frac{1}{4}\left(\frac{\mathrm{c}^{3}}{\sqrt{3}}\left(1-\frac{1}{3}\right)\right) \\\\ \mathrm{V}_{\mathrm{x}=\frac{\mathrm{c}}{\sqrt{3}}}=\frac{1}{4}\left(\frac{\mathrm{c}^{3}}{\sqrt{3}}\left(\frac{2}{3}\right)\right) \\\\ \mathrm{V}_{\mathrm{x}=\frac{\mathrm{c}}{\sqrt{3}}}=\frac{\mathrm{c}^{3}}{6 \sqrt{3}} \mathrm{units}

So, the box has a maximum value of is \frac{\mathrm{c}^{3}}{6 \sqrt{3}} cubic units.

Hence, proved.

 

Posted by

infoexpert22

View full answer