Q 8. Bisectors of angles $\mathrm{A}, \mathrm{B}$ and C of a triangle ABC intersect its circumcircle at $\mathrm{D}, \mathrm{E}$ and F respectively.
Prove that the angles of the triangle DEF are $90^{\circ}-\frac{1}{2} C,90^{\circ}-\frac{1}{2} B$ and $90^{\circ}-\frac{1}{2} A$
Given: Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle at D, E and F respectively.
To prove: the angles of the triangle DEF are $90^{\circ}-\frac{1}{2} C,90^{\circ}-\frac{1}{2} B$ and $90^{\circ}-\frac{1}{2} A$
Proof:
$\angle 1$ and $\angle 3$ are angles in the same segment. Therefore,
$\angle 1=\angle 3$ (angles in same segment are equal)-------(1)
and $\angle 2=\angle 4$-------2
Adding 1 and 2 , we have
$\angle 1+\angle 2=\angle 3+\angle 4$
$\Rightarrow \angle D=\frac{1}{2} \angle B+\frac{1}{2} \angle C$
$\Rightarrow \angle D=\frac{1}{2}(\angle B+\angle C)$
$\Rightarrow \angle D=\frac{1}{2}\left(180^{\circ}+\angle C\right)$
and $\Rightarrow \angle D=\frac{1}{2}\left(180^{\circ}-\angle A\right)$
$\Rightarrow \angle D=90^{\circ}-\frac{1}{2} \angle A$
Similarly,
$\angle E=90^{\circ}-\frac{1}{2} \angle B$ and $\angle F=90^{\circ}-\frac{1}{2} \angle C$