Get Answers to all your Questions

header-bg qa

Q : 8        By using properties of determinants, show that:

                (i)      \begin{vmatrix} 1 &a &a^2 \\ 1 &b &b^2 \\ 1 &c &c^2 \end{vmatrix}=(a-b)(b-c)(c-a)
 

Answers (1)

best_answer

We have the determinant \dpi{100} \begin{vmatrix} 1 &a &a^2 \\ 1 &b &b^2 \\ 1 &c &c^2 \end{vmatrix}

Applying the row transformations R_{1} \rightarrow R_{1} -R_{2}  and then R_{2} \rightarrow R_{2} -R_{3}  we have:

\triangle = \begin{vmatrix} 0 &a-b &a^2-b^2 \\ 0 &b-c &b^2-c^2 \\ 1 &c &c^2 \end{vmatrix}

= \begin{vmatrix} 0 &a-b &(a-b)(a+b) \\ 0 &b-c &(b-c)(b+c) \\ 1 &c &c^2 \end{vmatrix} = (a-b)(b-c)\begin{vmatrix} 0 &1 &(a+b) \\ 0 &1 &(b+c) \\ 1 &c &c^2 \end{vmatrix}

Now, applying R_{1} \rightarrow R_{1} -R_{2} we have:

= (a-b)(b-c)\begin{vmatrix} 0 &0 &(a-c) \\ 0 &1 &(b+c) \\ 1 &c &c^2 \end{vmatrix}    or    = (a-b)(b-c)(a-c)\begin{vmatrix} 0 &0 &1 \\ 0 &1 &(b+c) \\ 1 &c &c^2 \end{vmatrix} =(a-b)(b-c)(a-c)\begin{vmatrix} 0 &1 \\ 1 & c \end{vmatrix}

= (a-b)(b-c)(c-a)

Hence proved.

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads