Get Answers to all your Questions

header-bg qa

By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.

    Q6.    \int_2^8|x-5|dx

Answers (1)

best_answer

We have,                          I\ =\ \int_{2}^8|x-5|dx

For opening the modulus we need to define the bracket :

           If     (x - 5)  < 0    then  x belongs to (2, 5).  And if (x - 5) > 0 then x belongs to (5, 8).

So the integral becomes:-              

                                         I\ =\ \int_{2}^{5} -(x-5)dx\ +\ \int_{5}^{8} (x-5)dx

or                                     I\ =\ -\left [ \frac{x^2}{2}\ -\ 5x \right ]^{5} _{2}\ +\ \left [ \frac{x^2}{2}\ -\ 5x \right ]^{8} _{5}

This gives                       I\ =\ 9 

Posted by

Devendra Khairwa

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads