Get Answers to all your Questions

header-bg qa

2.20    Calculate the wavelength of an electron moving with a velocity of 2.05\times 10^7\ \textup{ms}^{-1}.

Answers (1)

best_answer

The wavelength of an electron is given by the de Broglie's equation:

\lambda = \frac{h}{mv}

Where, 

\lambda is the wavelength of moving particle,

m is the mass of the particle, i.e., 9.11\times10^{-31}kg                                                   

v is the velocity of the particle,i.e., 2.05\times 10^7\ \textup{ms}^{-1}   (Given)

and h is the Planck's constant value, i.e., (6.626\times10^{-34}Js)        

Now, substituting the values in the equation, we get

\lambda = \frac{(6.626\times10^{-34}Js)}{(9.11\times10^{-31}kg)(2.05\times10^{7}m/s)} = 3.548\times10^{-11}m

Hence, the wavelength of the electron moving with a velocity of 2.05\times 10^7\ \textup{ms}^{-1} is  3.548\times10^{-11}m.

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads