Get Answers to all your Questions

header-bg qa

Choose the correct answer in Exercises 21 and 22.

    Q22.    \int_0^\frac{2}{3}\frac{dx}{4+ 9x^2} equals 

                (A)    \frac{\pi}{6}

                (B)    \frac{\pi}{12}

                (C)    \frac{\pi}{24}

                (D)    \frac{\pi}{4}

Answers (1)

best_answer

Given definite integral \int_0^\frac{2}{3}\frac{dx}{4+ 9x^2}

Consider \int \frac{dx}{4+ 9x^2} = \int \frac{dx}{2^2+(3x)^2}

Now, putting 3x = t

we get, 3dx=dt

Therefore we have, \int \frac{dx}{2^2+(3x)^2} = \frac{1}{3}\int \frac{dt}{2^2+t^2}

= \frac{1}{3}\left ( \frac{1}{2}\tan^{-1}\frac{t}{2} \right ) = \frac{1}{6}\tan^{-1}\left ( \frac{3x}{2} \right )

we have the function of x , as f(x) =\frac{1}{6}\tan^{-1}\left ( \frac{3x}{2} \right )

So, by applying the second fundamental theorem of calculus, we get

\int_0^\frac{2}{3}\frac{dx}{4+ 9x^2} = f(\frac{2}{3}) - f(0)

= \frac{1}{6}\tan^{-1}\left ( \frac{3}{2}.\frac{2}{3} \right ) -\frac{1}{6}\tan^{-1}0

= \frac{1}{6}\tan^{-1}1 - 0

= \frac{1}{6}\times \frac{\pi}{4} = \frac{\pi}{24}

Therefore the correct answer is C.

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads