Get Answers to all your Questions

header-bg qa

Q : 12        Choose the correct answer in the following. 

                  Area lying in the first quadrant and bounded by the circle \small x^2+y^2=4  and the lines \small x=0 and                    \small x=2  is

                   \small (A)\hspace{1mm}\pi           \small (B)\hspace{1mm}\frac{\pi }{2}           \small (C)\hspace{1mm}\frac{\pi }{3}        \small (D)\hspace{1mm}\frac{\pi }{4}
                   

Answers (1)

best_answer

The correct answer is A
The area bounded by circle C(0,0,4) and the line x=2 is

The required area = area of OAB
                              \int^2_0ydx = \int^2_0\sqrt{4-x^2}dx
                                                \\=[\frac{x}{2}\sqrt{4-x^2}+\frac{4}{2}\sin^{-1}\frac{x}{2}]^2_0\\ =2(\pi/2)\\ =\pi

Posted by

manish

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads