Get Answers to all your Questions

header-bg qa

Q : 2    Choose the correct choice in the following and justify :

            (ii) 11th term of the AP:  \small -3,-\frac{1}{2},2,...,  is  

                (A) \small 28              (B) \small 22              (C)  \small -38             (D)  \small -48\frac{1}{2}

Answers (1)

best_answer

Given series is 
\small -3,-\frac{1}{2},2,...,
Here, a = -3
and 
d =-\frac{1}{2} -(-3)= -\frac{1}{2} + 3 = \frac{-1+6}{2}= \frac{5}{2}
Now, we know that
a_n = a+(n-1)d
It is given that n = 11
Therefore,
a_{11} = -3+(11-1)\left ( \frac{5}{2} \right )
a_{11} = -3+(10)\left ( \frac{5}{2} \right )
a_{11} = -3+5\times 5 = -3+25 = 22
Therefore, 11th term of the AP: \small -3,-\frac{1}{2},2,...,    is 22
Hence, Correct answer is (B)

Posted by

Gautam harsolia

View full answer