Q2. Construct the kite EASY if AY = 8 cm, EY = 4 cm and SY = 6 cm (Fig 4.26). Which properties of the kite did you use in the process?
We know, in a Kite one diagonal perpendicularly bisects the other diagonal.
Steps of construction:
Step 1. Draw a line segment AY= 8 cm. Draw the perpendicular bisector of AY.
Step 2. With Y as a center and radius = EY = 4 cm, draw an arc on one side of the perpendicular bisector. The intersection is point E.
Step 3. Again, With Y as a center and radius = SY = 6 cm, draw an arc on the other side of the perpendicular bisector. The intersection is point S.
Step 4. Join E to A and Y. And also join S to A and Y.
EASY is the required kite.
In the process of construction of the kite, we use the property that a kite has two pairs of equal adjacent sides and unequal sides. We draw a line PQ of any reasonable length. We take any point on it. At L, construction RU ⊥ PQ is shown.
Along LR and LU, cut off LA = LY = 4 cm with A as centre, we draw an arc of radius 4 cm. With Y as centre, we draw another arc of radius 4 cm intersecting the previous arc at E. We join EA and EY. With A as centre and radius 6 cm, we draw an arc on the other side of RS. With Y as centre, we draw another arc of radius 6 cm intersecting the previous arc at S. Join AS and YS. Thus we obtain the required kite EASY.