Get Answers to all your Questions

header-bg qa

Q40.    Evaluate \int_0^1e^{2-3x}dxas a limit of a sum.

Answers (1)

best_answer

As we know

\int_{a}^{b}f(x)dx=(b-a)\lim_{n\rightarrow \infty }\frac{1}{n}[f(a)+f(a+h)+f(a+2h)........+f(a+(n-1)h)]

where b-a=hn

In the given problem b=1, a=0 andf(x)=e^{2-3x}
\\\int_{0}^{1}e^{2-3x}dx=(1-0)\lim_{n\rightarrow \infty }\frac{1}{n}(e^{2}+e^{2-3h}+e^{2-3(2h)}.....+e^{2-3(n-1)h})\\ =e^{2}\lim_{n\rightarrow \infty }\frac{1}{n}(1+e^{-3h}+e^{-6h}....+e^{-3(n-1)h})\\ =e^{2}\lim_{n\rightarrow \infty }\frac{1}{n}(\frac{1-(e^{-3h})^{n}}{1-e^{-3h}})\\ =e^{2}\lim_{n\rightarrow \infty }\frac{1}{n}(\frac{1-e^{-\frac{3}{n}\times n}}{1-e^{-\frac{3}{n}}})\\

\\=e^{2}\lim_{n\rightarrow \infty }\frac{1}{n}(\frac{1-e^{-3}}{1-e^{-\frac{3}{n}}})\\ =\frac{e^{2}(1-e^{-3})}{3}\lim_{n\rightarrow \infty }\frac{-\frac{3}{n}}{e^{-\frac{3}{n}}-1}\\ =\frac{e^{2}(1-e^{-3})}{3}         

=\frac{e^{2}-e^{-1}}{3}                                             

Posted by

Sayak

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads