Get Answers to all your Questions

header-bg qa

11.  Evaluate     \sum_{k = 1}^{11} ( 2+ 3 ^k ) 

Answers (1)

best_answer

Given :   

              \sum_{k = 1}^{11} ( 2+ 3 ^k )

\sum_{k = 1}^{11} ( 2+ 3 ^k )=\sum _{k=1}^{11}2 +\sum _{k=1}^{11} 3^k

                          =22 +\sum _{k=1}^{11} 3^k...............(1)

\sum _{k=1}^{11} 3^k=3^1+3^2+3^3+....................3^1^1

These terms form GP with a=3 and r=3.

S_n=\frac{a(1-r^n)}{1-r}

S_n=\frac{3(1-3^1^1)}{1-3}

S_n=\frac{3(1-3^1^1)}{-2}

S_n=\frac{3(3^1^1-1)}{2}=\sum _{k=1}^{11} 3^k

\sum_{k = 1}^{11} ( 2+ 3 ^k )=22+\frac{3(3^1^1-1)}{2}

 

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads