Get Answers to all your Questions

header-bg qa

Evaluate the definite integrals in Exercises 1 to 20.

    Q14.    \int_0^1\frac{2x+3}{5x^2+1}dx

Answers (1)

best_answer

Given integral: \int_0^1\frac{2x+3}{5x^2+1}dx

Consider the integral \int \frac{2x+3}{5x^2+1}dx

Multiplying by 5 both in numerator and denominator:

\int \frac{2x+3}{5x^2+1}dx = \frac{1}{5}\int \frac{5(2x+3)}{5x^2+1}dx 

=\frac{1}{5}\int \frac{10x+15}{5x^2+1}dx

= \frac{1}{5} \int \frac{10x}{5x^2+1} dx +3\int \frac{1}{5x^2+1} dx

= \frac{1}{5}\int \frac{10x}{5x^2+1}+3\int \frac{1}{5\left ( x^2+\frac{1}{5} \right )}dx

= \frac{1}{5}\log(5x^2+1) +\frac{3}{5}\times \frac{1}{\frac{1}{\sqrt5}} \tan^{-1}\frac{x}{\frac{1}{\sqrt5}}

= \frac{1}{5}\log(5x^2+1) +\frac{3}{\sqrt5}\tan^{-1}(\sqrt5 x )

So, we have the function of xf(x) = \frac{1}{5}\log(5x^2+1) +\frac{3}{\sqrt5}\tan^{-1}(\sqrt5 x )

Now, by Second fundamental theorem of calculus, we have

I = f(1) -f(0)

= \left \{ \frac{1}{5}\log(1+5)+\frac{3}{\sqrt5}\tan^{-1}(\sqrt5) \right \} - \left \{ \frac{1}{5}\log(1)+\frac{3}{\sqrt5}\tan^{-1}(0) \right \}

= \frac{1}{5}\log 6 +\frac{3}{\sqrt 5}\tan^{-1}{\sqrt5}

 

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads