Get Answers to all your Questions

header-bg qa

Evaluate the definite integrals in Exercises 1 to 20.

    Q9.    \int_0^1\frac{dx}{\sqrt{1-x^2}}

Answers (1)

best_answer

Given integral: \int_0^1\frac{dx}{\sqrt{1-x^2}}

Consider the integral \int \frac{dx}{\sqrt{1-x^2}}

\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x

So, we have the function of xf(x) = \sin^{-1}x

Now, by Second fundamental theorem of calculus, we have

I = f(1) -f(0)

= \sin^{-1}(1) -\sin^{-1}(0)

= \frac{\pi}{2} - 0

= \frac{\pi}{2}

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads