Get Answers to all your Questions

header-bg qa

Evaluate the definite integrals in Exercises 1 to 20.

    Q19.    \int_0^2\frac{6x+3}{x^2+ 4}

Answers (1)

best_answer

Given integral: \int_0^2\frac{6x+3}{x^2+ 4}

Consider the integral \int \frac{6x+3}{x^2+ 4}

can be rewritten as: \int \frac{6x+3}{x^2+ 4} = 3\int \frac{2x+1}{x^2+4}dx

= 3\int \frac{2x}{x^2+4}dx +3\int \frac{1}{x^2+4}dx

= 3\log (x^2+4) +\frac{3}{2}\tan^{-1}\frac{x}{2}

 So, we have the function of xf(x) =3\log (x^2+4) +\frac{3}{2}\tan^{-1}\frac{x}{2}

Now, by Second fundamental theorem of calculus, we have

I = f(2) - f(0)

= \left \{ 3\log(2^2+4)+\frac{3}{2}\tan^{-1}\left ( \frac{2}{2} \right ) \right \}- \left \{ 3\log(0+4)+\frac{3}{2}\tan^{-1}\left ( \frac{0}{2} \right ) \right \}=3\log 8 +\frac{3}{2}\tan^{-1}1 -3\log 4 -\frac{3}{2}\tan^{-1} 0

=3\log 8 +\frac{3}{2}\times\frac{\pi}{4} -3\log 4 -0

=3\log \frac{8}{4} +\frac{3\pi}{8}

or we have =3\log 2 +\frac{3\pi}{8}

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads