Get Answers to all your Questions

header-bg qa

Evaluate the definite integrals in Exercises 25 to 33.

    Q33.    \int_1^4[|x-1| + |x-2| + |x-3|]dx

Answers (1)

best_answer

Given integral \int_1^4[|x-1| + |x-2| + |x-3|]dx

So, we split it in according to intervals they are positive or negative.

= \int_{1}^4 |x-1| dx + \int_{1}^4 |x-2| dx + \int^4_{1} |x-3| dx

= I_{1}+I_{2}+I_{3}

Now,

I_{1} = \int^4_{1}|x-1| dx = \int^4_{1} (x-1)dx 

\becauseas (x-1) is positive in the given x -range [1,4]

=\left [ \frac{x^2}{2}-x\right ]^4_{1} = \left [ \frac{4^2}{2}-4 \right ] - \left [ \frac{1^2}{2}-1 \right ]

= \left [ 8-4 \right ] - [-\frac{1}{2}] = 4+\frac{1}{2} = \frac{9}{2}                    

Therefore, I_{1} = \frac{9}{2}

I_{2} = \int^4_{1}|x-2| dx = \int^2_{1} (2-x)dx +\int^4_{2} (x-2)dx 

\becauseas (x-2)\geq 0 is in the given x -range [2,4] and \leq 0 in the range [1,2]

=\left [ 2x - \frac{x^2}{2}\right ] ^2_{1} + \left [ \frac{x^2}{2} -2x\right ] ^4_{2}

= \left \{ \left [ 2(2)-\frac{2^2}{2} \right ] - \left [ 2(1)-\frac{1^2}{2} \right ] \right \} + \left \{ \left [ \frac{4^2}{2}-2(4) \right ] - \left [ \frac{2^2}{2}-2(2) \right ] \right \}

= [4-2-2+\frac{1}{2}] +[8-8-2+4]

= \frac{1}{2}+2 =\frac{5}{2}

Therefore, I_{2} = \frac{5}{2}

I_{3} = \int^4_{1}|x-3| dx = \int^3_{1} (3-x)dx +\int^4_{3} (x-3)dx 

\becauseas (x-3)\geq 0 is in the given x -range [3,4] and \leq 0 in the range [1,3]

=\left [ 3x - \frac{x^2}{2}\right ] ^3_{1} + \left [ \frac{x^2}{2} -3x\right ] ^4_{3}

= \left \{ \left [ 3(3)-\frac{3^2}{2} \right ] - \left [ 3(1)-\frac{1^2}{2} \right ] \right \} + \left \{ \left [ \frac{4^2}{2}-3(4) \right ] - \left [ \frac{3^2}{2}-3(3) \right ] \right \}

= [9-\frac{9}{2}-3+\frac{1}{2}]+[8-12-\frac{9}{2}+9]

= [6-4]+\frac{1}{2} =\frac{5}{2}

Therefore, I_{3} = \frac{5}{2}

So, We have the sum = I_{1}+I_{2}+I_{3}

I = \frac{9}{2}+\frac{5}{2}+\frac{5}{2} = \frac{19}{2}

 

 

 

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads