Get Answers to all your Questions

header-bg qa

10.   Evaluate the following limits \lim_{z\rightarrow 1} \frac{z^{1/3}-1}{z^{1/6}-1}

Answers (1)

best_answer

The limit

\lim_{z\rightarrow 1} \frac{z^{1/3}-1}{z^{1/6}-1}

Here on directly putting limit , both numerator and the denominator becomes zero so we factorize the function and then put the limit.

\lim_{z\rightarrow 1} \frac{z^{1/3}-1}{z^{1/6}-1}=\lim_{z\rightarrow 1} \frac{z^{(1/6)^2}-1^2}{z^{1/6}-1}

=\lim_{z\rightarrow 1} \frac{(z^{(1/6)}-1)(z^{(1/6)}+1)}{z^{1/6}-1}

=\lim_{z\rightarrow 1} (z^{(1/6)}+1)}

= (1)(1/6) + 1

=1+1

=2  (Answer)

 

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads