Get Answers to all your Questions

header-bg qa

Evaluate the integrals in Exercises 1 to 8 using substitution.

    Q4.    \int_0^2x\sqrt{x+2}. (Put {x+2} = t^2)

Answers (1)

best_answer

Let x+2 = t^2\Rightarrow dx =2tdt
when x = 0 then t = \sqrt{2} and when x=2 then t = 2

I=\int_{0}^{2}x\sqrt{x+2}dx

     \\=2\int_{\sqrt{2}}^{2}(t^2-2)t^2dt\\ =2\int_{\sqrt{2}}^{2}(t^4-2t^2)dt\\ =2[t^5/5-\frac{2}{3}t^3]^2_{\sqrt{2}}\\ =2[\frac{32}{5}-\frac{16}{3}-\frac{4\sqrt{2}}{5}+\frac{4\sqrt{2}}{3}]\\ =\frac{16\sqrt{2}(\sqrt{2}+1)}{15}

 

Posted by

manish

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads