Get Answers to all your Questions

header-bg qa

33. Examine that sin | x| is a continuous function.

Answers (1)

best_answer

Given function is 
f(x) = sin |x|
f(x) = h o g  , h(x) = sin x and g(x) = |x|
Now,

g(x)\begin{cases} -x & \text{ if } x<0 \\ 0 & \text{ if } x= 0\\ x& \text{ if } x>0 \end{cases}
g(x) is defined for all real numbers k
case(i)  k < 0
g(k) = -k\\ \lim_{x\rightarrow k}g(x) = -k\\ \lim_{x\rightarrow k}g(x) = g(k)
Hence, g(x) is continuous when k < 0

case (ii) k > 0
g(k) = k\\ \lim_{x\rightarrow k}g(x) = k\\ \lim_{x\rightarrow k}g(x) = g(k)
Hence, g(x) is continuous when k > 0

case (iii) k = 0
g(0) = 0\\ \lim_{x\rightarrow 0^-}g(x) = -x = 0\\ \lim_{x\rightarrow 0^+}g(x ) = x = 0\\ \lim_{x\rightarrow 0^-}g(x) = g(0) = \lim_{x\rightarrow 0^+}g(x )
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x
Now, 
h(x) = sin x
Let suppose  x = c + h
if  x \rightarrow c , \ then \ h \rightarrow 0
h(c) = \sin c\\ \lim_{x\rightarrow c}h(x) = \lim_{x\rightarrow c}\sin x = \lim_{h\rightarrow 0}\sin (c+h)\\ We \ know \ that\\ \sin(a+b) = \sin a \cos b + \cos a\sin b\\ \lim_{h\rightarrow 0}\sin (c+h) = \lim_{h\rightarrow 0}(\sin c\cos h + \cos c \sin h) = \lim_{h\rightarrow 0}\sin c\cos h + \lim_{h\rightarrow 0}\cos c \sin h
                                                                                                 =\sin c\cos 0 + \cos c \sin 0 = \sin c
\lim_{x\rightarrow c}h(x) = h(c)
Hence, function h(x) = \sin x is a continuous function
g(x) is continuous , h(x) is continuous
Therefore, f(x) = h o g is also continuous

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads