Get Answers to all your Questions

header-bg qa

Q : 5        Examine the consistency of the system of equations.

                \small 3x-y-2z=2

                \small 2y-z=-1

                \small 3x-5y=3

Answers (1)

best_answer

We have given the system of equations:

                                  \small 3x-y-2z=2

                                    \small 2y-z=-1

                                     \small 3x-5y=3

The given system of equations can be written in the form of matrix; AX =B

where A = \begin{bmatrix} 3& -1&-2 \\ 0& 2& -1\\ 3& -5 &0 \end{bmatrix},  X = \begin{bmatrix} x\\y \\ z \end{bmatrix}  and B = \begin{bmatrix} 2\\-1 \\ 3 \end{bmatrix}.

So, we want to check for the consistency of the equations;

|A| = 3(0-5) -(-1)(0+3)-2(0-6)

= -15 +3+12 = 0 

Therefore matrix A is a singular matrix.

So, we will then check (adjA)B,

(adjA) = \begin{bmatrix} -5 &10 &5 \\ -3& 6 & 3\\ -6& 12 & 6 \end{bmatrix}

\therefore (adjA)B = \begin{bmatrix} -5 &10 &5 \\ -3& 6 & 3\\ -6& 12 & 6 \end{bmatrix}\begin{bmatrix} 2\\-1 \\ 3 \end{bmatrix} = \begin{bmatrix} -10-10+15\\ -6-6+9 \\ -12-12+18 \end{bmatrix} = \begin{bmatrix} -5\\-3 \\ -6 \end{bmatrix} \neq 0

As, (adjA)B is non-zero thus the solution of the given system of the equation does not exist. Hence, the given system of equations is inconsistent.

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads