Get Answers to all your Questions

header-bg qa

Q10.    Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

            (iv)    \begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}

Answers (1)

best_answer

A =\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}

A'=\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}

A+A'=\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}+\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}

A+A'=\begin{bmatrix} 2 & 4\\ 4 & 4 \end{bmatrix}

Let  

      B=\frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 2 & 4\\ 4 & 4 \end{bmatrix}=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}

      B'=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}=B

      Thus,  \frac{1}{2}(A+A')  is a symmetric matrix.

 

      

A-A'=\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}-\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}

     A-A'=\begin{bmatrix} 0 & 6\\ -6 & 0 \end{bmatrix}

Let 

C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 6\\ -6 & 0 \end{bmatrix}= \begin{bmatrix} 0 & 3\\ -3 & 0 \end{bmatrix}

C'= \begin{bmatrix} 0 & -3\\ 3 & 0 \end{bmatrix}

C=-C'

Thus, \frac{1}{2}(A-A') is a skew-symmetric matrix.

Represent   A  as the sum of B and C.

B+C=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}  - \begin{bmatrix} 0 & -3\\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 5\\ -1 & 2\end{bmatrix}=A

 

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads