Get Answers to all your Questions

header-bg qa

Q 9.32  Figure 9.34 shows an equiconvex lens (of refractive index 1.50) in contact with a liquid layer on top of a plane mirror. A small needle with its tip on the principal axis is moved along the axis until its inverted image is found at the position of the needle. The distance of the needle from the lens is measured to be 45.0cm. The liquid is removed and the experiment is repeated. The new distance is measured to be 30.0cm. What is the refractive index of the liquid?

 

                             

Answers (1)

best_answer

Given

The focal length of the convex lens f_{convex}=30cm

here liquid is acting like the mirror so,

the focal length of the liquid =f_{liquid}

the focal length of the system(convex + liquid) f_{system}=45cm

Equivalent focal length when two optical systems are in contact

\frac{1}{f_{system}}=\frac{1}{f_{convex}}+\frac{1}{f_{liquid}}

\frac{1}{f_{liquid}}=\frac{1}{f_{system}}-\frac{1}{f_{convex}}

\frac{1}{f_{liquid}}=\frac{1}{45}-\frac{1}{30}=-\frac{1}{90}

f_{liquid}=-90cm

Now, let us assume the refractive index of the lens be \mu _{lens}

The radius of curvature is R and -R.

As we know,

\frac{1}{f_{convex}}=(\mu _{lens}-1)\left ( \frac{1}{R}-\frac{1}{-R} \right )

\frac{1}{f_{convex}}=(\mu _{lens}-1)\frac{2}{R}

R=2(\mu _{lens-1})f_{convex}=2(1.5-1)30=30cm

Now, let the refractive index of the liquid be \mu _{liquid}

The radius of curvature of liquid in plane mirror side = infinite

The radius of curvature of liquid in lens side R  = -30cm

As we know,

\frac{1}{f_{liquid}}=(\mu_{liquid-1})\left ( \frac{1}{R}-\frac{1}{infinite} \right )

-\frac{1}{90}=(\mu_{liquid}-1)(\frac{1}{30})

\mu_{liquid}= 1+\frac{1}{3}

\mu_{liquid}= 1.33

Therefore the refractive index of the liquid is 1.33.

Posted by

Pankaj Sanodiya

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads